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Global conservation prioritization usually emphasizes areas with
highest species richness or where many species are thought to be
at imminent risk of extinction. However, these strategies may
overlook areas where many species have biological traits that
make them particularly sensitive to future human impact but are
not yet threatened because such impact is currently low. In this
article, we identify such areas for the world’s mammals using
latent extinction risk, the discrepancy between a species’ current
extinction risk and that predicted from models on the basis of
biological traits. Species with positive latent risk are currently less
threatened than their biology would suggest, usually because they
inhabit regions or habitats still comparatively unmodified by
human activity. Using large new geographic, biological, and phy-
logenetic databases for nearly 4,000 mammal species, we map the
global geographic distribution of latent risk to reveal areas where
the mammal fauna is still relatively unthreatened but has high
inherent sensitivity to disturbance. These hotspots include large
areas such as the Nearctic boreal forests and tundra that are
unrepresented in most current prioritization schemes, as well as
high-biodiversity areas such as the island arc from Indonesia to the
south Pacific. Incorporating latent extinction risk patterns into
conservation planning could help guard against future biodiversity
loss by anticipating and preventing species declines before they
begin.

conservation planning � hotspots � Red List

Systematic conservation planning seeks to optimize the allo-
cation of scarce conservation funding by prioritizing areas

for protection. Because biodiversity loss is now recognized as a
global-scale phenomenon and many conservation decisions are
taken at an international level, conservation planning is increas-
ingly done on a global scale (1). Priority areas or hotspots are
usually identified on the basis of species richness, the numbers
of threatened or endemic (narrowly distributed) species, and the
degree of habitat loss already incurred (2–8). This approach is
necessarily a remedial one, responding to the need to minimize
biodiversity loss in regions where human disturbance to natural
habitats has already been severe or is ongoing. In this article, we
present a more proactive extension to this approach by identi-
fying areas where disturbance may be low at present but the
potential for future loss of species is severe. To identify these
areas, we use the concept of ‘‘latent extinction risk,’’ i.e., the
discrepancy between a species’ current extinction risk and the
risk predicted from its biological traits.

Species do not respond equally to human impacts such as
habitat loss or hunting: some species are far more likely to
become threatened with extinction than others (9, 10). Much of
the variation in extinction risk is associated with species’ biology
so that predictive models of extinction risk can be constructed
from sets of ecological and life-history traits (11–20). If the
current extinction risk of a species is subtracted from the
extinction risk predicted by its biology, the quantity remaining is
the species’ latent extinction risk. Strongly negative latent risk
values indicate species in which current extinction risk is far in

excess of that expected from their biology, most likely due to
having been exposed to severe threatening processes. Con-
versely, high positive values of latent risk indicate species in
which biology should make them relatively sensitive to human
impact (e.g., they may have low reproductive rates) but that have
not yet experienced human pressures that would cause this
biological disadvantage to be expressed as a continuing popu-
lation decline. Latent risk can be thought of as a measure of the
potential for a species to decline rapidly toward extinction given
exposure to levels of human impact equivalent to the present day
average across species. It follows that areas in which a large
proportion of species have high latent risk values have a partic-
ularly high potential for future species losses. Our aim here is to
characterize the global geographic patterns of latent risk for
mammals, the only major taxonomic group for which sufficient
data currently exist for such an analysis.

Results and Discussion
We used large new databases of the biology and phylogeny of
nearly 4,000 nonmarine mammal species to construct phyloge-
netically controlled comparative models of species-level extinc-
tion risk. The extinction risk response variable in our models was
The World Conservation Union (IUCN) Red List (21) (www.
redlist.org), converted to a numerical index from 0–5. Threat-
ened species not listed under criterion A of the Red List were
excluded; therefore, the index corresponds to a rate of recent and
ongoing population decline (11, 12, 15, 19), determined by
objective, quantitative criteria (22). We fitted separate predictive
models of extinction risk for major mammal clades. The models
typically explain between one-third and one-half of the variation
in extinction risk and reveal a range of life-history and ecological
predictors of risk (Table 1). In particular, the models highlight
the importance of small geographic range size, large body mass,
and ‘‘slow’’ life history as indicators of elevated risk. Latent
extinction risk for each species was calculated as the predicted
extinction risk value from the relevant within-clade model minus
the current extinction risk from our index, based on the Red List.
To summarize geographic patterns of current, predicted, and
latent extinction risk, we calculated mean values of each for
species occurring within each cell (�10,000 km2) of a global
equal-area grid. Summarizing extinction risk across species in
this way reveals considerable geographic heterogeneity, with
distinct areas of low and high values for each of the three
extinction risk measures (Fig. 1 a–c). Latent risk is particularly
low in many parts of the world already heavily modified by
human activity, especially Europe, western Russia, Japan, Mada-
gascar, and New Zealand (Fig. 1c). These areas are all regions
where human impact on mammal species has already largely
made itself felt, and thus, there are comparatively few surviving
species with high latent risk.
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It is the areas where mean latent risk is highest, however, that
have the greatest potential for future species losses, based on
current correlates of extinction risk. These regions are, in
general, areas where the mean current extinction risk of species
is relatively low but the predicted risk is high: most obviously, the
northern regions of North America and the arc of islands
between the Bay of Bengal and the southwest Pacific. To define
the geographic hotspots of latent risk, we selected grid cells with
the highest 10% of values (Fig. 2). This value is an arbitrary
cutoff, selected to match the approximate proportion of the
world’s land area currently protected within reserves (23)
(http:��sea.unep-wcmc.org�wdbpa�) rather than to represent
some biologically meaningful dichotomy. Setting the cutoff at
5% and 15% produced hotspots that varied in extent but
occupied the same basic locations. The 20 hotspots thus iden-
tified (Table 2) are not simply reflections of those parts of the
world in which human impact has been less extensive than
elsewhere: the Amazon region, for example, is still largely
undisturbed but has relatively low latent risk. Rather, the
hotspots reflect a combination of comparatively low human
impact and a mammal fauna consisting of species that have (on
average) high inherent sensitivity to disturbance. For example,
the hotspots of Arctic North America contain largely intact
habitats in which few species are currently threatened but have
many large-bodied ungulates and carnivores with slow life
histories, and hence low maximum rates of population growth.
Islands also figure prominently as areas of high mean latent risk.
This pattern is unsurprising given the preponderance of narrowly
distributed endemic species on islands and the importance of a
small geographic range as a predictor of high extinction risk for
most clades (Table 1), giving many islands a high level of
predicted extinction risk (Fig. 1b). There is a possibility that the
low current levels of extinction risk on some islands (Fig. 1a) is
the result of a filter effect (24), whereby the most extinction-
prone species have already disappeared. However, we consider
it unlikely that filter effects have driven high latent risk levels on
islands. In a postfilter assemblage, both current and predicted
extinction risk levels should be low; therefore, such assemblages
would not be expected to have high latent risk.

Our calculations of latent risk do, of course, rely on the
accuracy of the extinction-risk models. One possible source of
bias is the incompleteness of the biological data matrix, which

means that not all species in our data set were represented in the
models. For most clades, 33–100% of the species in our data set
were included in the models; the figure is somewhat lower for
Rodentia (17%) and the ‘‘minor clades’’ (18.2%). We must
therefore assume that the subset of species included are an
unbiased sample. This assumption could be violated if threat-
ened species are the focus of more research attention so that the
amount of information available on the biology of a species is not
independent of its extinction risk status. This hypothesis does
not, in fact, appear to be the case for our data set: the correlation
among species between extinction risk status and the number of
traits for which data exist is very low (P � 0.96). Moreover, the
hotspots appear to be robust to uncertainty in the model
parameter estimates. Recalculating latent risk values by using the
upper and lower 95% confidence bounds of predicted extinction
risk values produced hotspots with 98.6% and 97.5% congru-
ence, respectively, with the hotspots shown in Fig. 2. Neverthe-
less, we expect that the extinction risk models can be updated and
refined as information on the biological traits of mammal species
continues to accumulate.

Our use of detailed models of extinction risk based on species
biology is a more powerful method of assessing sensitivity of
species assemblages than the common approach of mapping the
occurrences of rare, endemic, or currently threatened species (2,
4, 25–27). The latter approach assumes that current relative
rankings of species on the extinction risk scale are maintained
through time: that is, the most highly threatened species today
will be the first to disappear in the future. This is not necessarily
a reasonable assumption, however. Synergistic effects of biology
with human impact (11, 12, 28) mean that some species are
expected to decline much more rapidly toward extinction than
others as levels of disturbance increase. Hence, many species
currently considered relatively safe could leapfrog other species
on the extinction risk scale to become the most highly threatened
in the next few decades (12). In fact, this phenomenon has
already occurred in a number of recent cases. The Guatemalan
howler monkey Alouatta pigra, for example, has rapidly advanced
several stages along the Red List, from Least Concern in 2000 to
Endangered in 2004; this shift is considered a genuine change in
status, not simply the product of new or better information (21).

An important feature of the distribution of latent risk hotspots
is their lack of congruence with hotspots of mammal species

Table 1. Extinction risk models for nonmarine mammal clades

Marsupials Afrotheria Carnivora Ungulates Primates Chiroptera Rodentia Lagomorpha Minor clades

No. of species in model 87 39 87 60 67 765 290 64 54
Degrees of freedom 71 26 69 46 52 372 159 56 44
R2 0.45 0.93 0.41 0.33 0.46 0.41 0.16 0.71 0.39
Adult mass 3.28** �5.95*** 4.48*** �2.22* 2.05* 4.87***
Adult mass† �3.89*** 11.08*** 2.69**
Weaning age 3.64*** �2.38*
Sexual maturity age �3** 2.01*
Litter size �2.48*
Litters per year �3.18** �2.96**
Gestation length 2.32*
Population density �2.64* �2.06*
Arboreality �3.06**
Geographic range size �5.65*** �4.25*** �3.79*** �16.03*** �5.01*** 6.72*** 4.87***
Geographic range size† �6.86***
Geographic range size‡ 6.83***
Geographic range size �

adult mass
�2.85**

Values shown in the columns are t values. Degrees of freedom are based on the number of phylogenetically independent contrasts and, therefore, are
considerably lower than the number of species in most cases. Arboreality is an index reflecting the degree to which a species is tree dwelling. Full definitions
of the variables are in ref. 11. *, P � 0.05; **, P � 0.01; ***, P � 0.001; †, quadratic term; ‡, cubic term.
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richness. If species richness hotspots are defined conservatively
as the most species-rich 10% of grid cells, the overlap with the
latent risk hotspots in Fig. 2 is only 2.7%, restricted to a small
area of Peninsular Malaysia and northern Borneo. Hotspots

defined as the 10% of grid cells with the highest numbers of
‘‘endemic’’ species [those in the lower quartile of geographic
range size (4)] overlap with the latent risk hotspots by only 9.1%.
Hotspots defined as the 10% of grid cells with highest numbers
of species listed as threatened in the Red List overlap with latent
risk hotspots by only 1%. Hence, areas within the latent risk
hotspots will be poorly represented under conservation priori-
tization schemes that seek to maximize total species numbers, or
numbers of endemic or threatened species, represented in
reserve networks or otherwise protected (25–27, 29). Neverthe-
less, in many of the latent risk hotspots, current levels of
protection within reserves �1,000 hectares [the smallest reserves
are less likely to sustain viable mammal populations (30)] are
well below the global average of 11.9% (23) (Table 2). Further-
more, many of the latent risk hotspots are expected to undergo
rapid increases in human population density (Table 2), with
mean projected annual rates of human population growth from
2000–2015 far in excess of the global average of 1.13% (31)
(http:��sedac.ciesin.columbia.edu�plue�gpw). Human popula-
tion density is a general indicator of threats to biodiversity (12,
32); therefore, species in these areas will come under rapidly
increasing pressure in coming decades.

We see the latent extinction risk approach as an extension, not an
alternative, to existing conservation prioritization schemes. The
strategy of prioritizing hotspots of total, endemic, or threatened
species richness has many advantages as a cornerstone of efforts to
stem global biodiversity loss (5). Nevertheless, identifying areas of
highest latent risk offers the best chance to anticipate species losses
before they begin and, thus, to implement effective preemptive
conservation measures. By definition, latent risk hotspots tend to be
in less heavily disturbed regions with comparatively high wilderness
value. In such areas, the benefit-to-cost ratio of conservation is
often higher than in more developed regions (33). Therefore,
incorporating latent risk patterns into global conservation planning
may be one of the most cost-effective means of protecting biodi-
versity in the long term. High latent risk areas could also play a role
in guiding efforts to monitor the state of wild nature for the
Convention on Biological Diversity’s 2010 target to reduce the rate
of biodiversity loss (34) (www.biodiv.org�decisions�default.aspx).
Monitoring the indicators of progress toward the 2010 target, such
as the abundance and distribution of selected species, cannot be
done everywhere and must be undertaken selectively (35). It makes
sense, therefore, to include in monitoring schemes those areas in

Fig. 1. Global geographic distribution of extinction risk in nonmarine
mammals. Current extinction risk (a), predicted extinction risk (b), and latent
extinction risk (c) is shown. Values are averages of species found within each
grid cell; cell size is �10,000 km2.

Fig. 2. Hotspots of latent extinction risk in nonmarine mammals. Hotspots are defined as the 10% of grid cells with the highest mean latent risk values.
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which free-ranging populations appear likely to be especially sen-
sitive to future human impacts.

Materials and Methods
Data Sets. Biological trait data were from a database compiled
from around 3,300 literature sources, containing data on 25
ecological and life-history traits for 4,030 mammal species. The
extinction risk index was based on the 2004 The World Conser-
vation Union Red List (21) converted to an index from 0–5,
following protocols found in refs. 11, 12, 15, 19. Our data set
included threatened species only where they were listed under
criterion A of the Red List (a recent or ongoing decline in
population size) (21) to avoid the circularity of including species
listed on the basis of small population size or narrow distribution
(19). To calculate phylogenetically independent contrasts (see
below), we constructed a dated, composite supertree phylogeny
of 4,497 mammal species, using a standardized methodology (11,
36). To map the geographic distributions of current, predicted,
and latent extinction risk, we overlaid mammal species distribu-
tion maps (37) onto a Behrmann-projected global equal-area
grid, with a resolution of 96.486 km. We then calculated the
mean value of each extinction risk measure for the set of species
thus indicated as occurring within each grid cell.

Statistical Models. Separate regression models of extinction risk
were fitted for the following mammal clades: Carnivora,
Primates, Rodentia, marsupials, ungulates (Artiodactyla �
Perissodactyla), Lagomorpha, Afrotheria (Hyracoidea �
Macroscelidea � Tubulidentata � Chrysochloridae � Tenre-
cidae), and Chiroptera. Because the remaining clades (Xen-
arthra, Scandentia, Eulipotyphla, and Monotremata) each had
too few species with data values for reliable model fitting, we
pooled these as ‘‘minor clades’’ and analyzed them together.
Models were fitted by using phylogenetically independent
contrasts to eliminate the pseudoreplication that would oth-
erwise result from the nonindependence of species (28).
Before calculating contrasts, polytomies (unresolved nodes in
the phylogeny) were resolved to a series of bifurcating nodes
separated by zero-length branches. The contrast calculated at

each of these new nodes was given reduced weighting in the
regression model such that each polytomy contributed only a
single degree of freedom to the model. Phylogenetic branch
lengths were transformed by raising them to a power (�), then
optimizing the value of � to minimize the correlation between
contrasts and their standard deviations (38). Minimum ade-
quate regression models were then found by using heuristic
procedures (12, 19) to simplify them from the list of biological
traits. Having thus identified the set of independent biological
predictors of extinction risk for each mammal clade using
phylogenetically independent contrasts, we then fitted the
same set of predictors in standard, nonphylogenetic regres-
sions and used these equations to calculate predicted values of
extinction risk. This method was necessary because regressions
on independent contrasts do not estimate an intercept and
because the procedure used to optimize phylogenetic branch
lengths renders slope estimates noncomparable (38). All anal-
yses were carried out by using functions written in R (39)
(www.R-project.org).

Hotspot Identification. Hotspots of latent extinction risk were
identified as those grid cells in which the mean latent risk value
was �0.2248, the 90th percentile value of the distribution of
latent risk values across grid cells. We only identified contiguous
or closely spaced clusters of at least six such grid cells as hotspots;
hence, there are several isolated, single, or small clusters of grid
cells with high latent risk values that we have not assigned to
hotspots. In delineating separate hotspots (Fig. 2), we erred on
the side of splitting rather than aggregating island groups to
capture the heterogeneity in latent risk values, human popula-
tion growth rates, and reserve coverage. For example, the area
corresponding to the ‘‘Sundaland’’ hotspot of Conservation
International (6) is here divided into four separate latent risk
hotspots: Sumatra and Peninsular Malaysia, Borneo, Sulawesi,
and Western Java.

We thank L. Bromham and I. Owens for comments and discussions and
R. Beck, J. Bielby, O. Bininda-Emonds, E. Boakes, C. Carbone, T.
Clary, C. Connolly, M. Cutts, J. Davies, J. Foster, R. Grenyer, M.
Habib, K. Jones, V. Kanchaite, R. Liu, M. Miyamoto, J. O’Dell, D.

Table 2. Hotspots of latent extinction risk in nonmarine mammals

Hotspot Area, km2

Total species
no. Mean latent risk (�SE)

Proportion protected
in reserves �1,000

hectares, %

Projected annual human
population growth

2000–2015, %

New Guinea 714,175 205 0.36 � 0.001 10.78 2.91
Melanesian islands 119,611 96 0.54 � 0.01 7.22 2.78
Indian Ocean islands 1,438 10 0.54 � 0.14 7.29 2.15
Andaman and Nicobar Islands 6,948 20 0.61 � 0.04 7.55 1.96
Sulawesi 178,114 130 0.31 � 0.001 11.35 1.92
Borneo 519,625 224 0.27 � 0.001 19.64 1.82
Patagonian Coast 33,292 26 0.25 � 0.001 0 1.64
Sumatra and Peninsular Malaysia 616,746 284 0.26 � 0.001 17.52 1.62
Western Java 71,109 131 0.25 � 0.001 4.48 1.30
Nusa Tenggara 87,735 86 0.34 � 0.003 9.03 0.80
East Indian highlands 15,548 70 0.23 � 0.001 3.53 0.69
Lesser Antilles 3,889 16 0.35 � 0.02 14.19 0.51
Southern Polynesia 566 3 0.97 � 0.05 0.07 0.46
Northern Canada and Alaska 4,694,500 96 0.32 � 0.001 13.33 0.09
Maluku 76,331 99 0.51 � 0.01 7.05 0.05
Tasmania and Bass Strait 73,002 49 0.31 � 0.002 31.35 �0.11
Siberian tundra 235,597 35 0.27 � 0.001 11.34 �0.56
Bahamas 8,241 8 0.41 � 0.02 1.14 �0.65
Greenland 882,468 9 0.63 � 0.002 18.55 �0.76
Eastern Canadian Forests 884,833 57 0.26 � 0.001 6.38 �0.84

Hotspots are listed in descending order of projected human population growth.

4160 � www.pnas.org�cgi�doi�10.1073�pnas.0510541103 Cardillo et al.



Orme, C. Plaster, S. Price, E. Rigby, J. Rist, W. Sechrest, M. Tambutti,
A. Teacher, and R. Vos for contributing to the construction of the
databases. This work was funded by Natural Environment Research

Council (London) Grants NER�A�S�2001�00581 and NE�B503492�1
(to G.M.M. and A.P.) and National Science Foundation Grant DEB�
0129009 (to J.L.G.).

1. Margules, C. R. & Pressey, R. L. (2000) Nature 405, 243–253.
2. Ricketts, T. H., Dinerstein, E., Boucher, T., Brooks, T. M., Butchart, S. H. M.,

Hoffmann, M., Lamoreux, J. F., Morrison, J., Parr, M., Pilgrim, J. D., et al.
(2005) Proc. Natl. Acad. Sci. USA 102, 18497–18501.

3. Stattersfield, A. J., Crosby, M. J., Long, A. J. & Wege, D. C. (1998) Endemic
Bird Areas of the World: Priorities for Biodiversity Conservation (BirdLife
International, Cambridge, U.K.).

4. Orme, C. D. L., Davies, R. G., Burgess, M., Eigenbrod, F., Pickup, N., Olson,
V. A., Webster, A. J., Ding, T. S., Rasmussen, P. C., Ridgely, R. S., et al. (2005)
Nature 436, 1016–1019.

5. Myers, N. (2003) Bioscience 53, 916–917.
6. Mittermeier, R. A., Gil, P. R., Hoffman, M., Pilgrim, J., Brooks, T., Mitter-

meier, C. G., Lamoreux, J. & da Fonseca, G. A. B. (2005) Hotspots Revisited:
Earth’s Biologically Richest and Most Threatened Terrestrial Ecoregions (Cemex,
Conservation International and Agrupacion Sierra Madre, Monterrey,
Mexico).

7. Mittermeier, R. A., Myers, N., Thomsen, J. B., da Fonseca, G. A. B. & Olivieri,
S. (1998) Conserv. Biol. 12, 516–520.

8. Bibby, C. J., Collar, N. J., Crosby, M. J., Heath, M. F., Imboden, C., Johnson,
T. H., Long, A. J., Stattersfield, A. J. & Thirgood, S. J. (1992) Putting
Biodiversity on the Map: Priority Areas for Global Conservation (International
Council for Bird Preservation, Cambridge, U.K.).

9. McKinney, M. L. (1997) Ann. Rev. Ecol. Syst. 28, 495–516.
10. Purvis, A., Agapow, P.-M., Gittleman, J. L. & Mace, G. M. (2000) Science 288,

328–330.
11. Cardillo, M., Mace, G. M., Jones, K. E., Bielby, J., Bininda-Emonds, O. R. P.,

Sechrest, W., Orme, C. D. L. & Purvis, A. (2005) Science 309, 1239–1241.
12. Cardillo, M., Purvis, A., Sechrest, W., Gittleman, J. L., Bielby, J. & Mace, G. M.

(2004) PLoS Biol. 2, 909–914.
13. Fisher, D. O., Blomberg, S. P. & Owens, I. P. F. (2003) Proc. R. Soc. London

Ser. B 270, 1801–1808.
14. Fisher, D. O. & Owens, I. P. F. (2004) Trends Ecol. Evol. 19, 391–398.
15. Jones, K. E., Purvis, A. & Gittleman, J. L. (2003) Am. Nat. 161, 601–614.
16. O’Grady, J. J., Reed, D. H., Brook, B. W. & Frankham, R. (2004) Biol. Conserv.

118, 513–520.
17. Owens, I. P. F. & Bennett, P. M. (2000) Proc.Natl. Acad. Sci. USA 97,

12144–12148.
18. Polishchuk, L. V. (2002) Science 297, 1123.
19. Purvis, A., Gittleman, J. L., Cowlishaw, G. & Mace, G. M. (2000) Proc. R. Soc.

London Ser. B 267, 1947–1952.
20. Reynolds, J. D., Dulvy, N. K., Goodwin, N. B. & Hutchings, J. A. (2005) Proc.

R. Soc. London Ser. B 272, 2337–2344.

21. The World Conservation Union (IUCN) (2004) 2004 IUCN Red List of
Threatened Species (IUCN, Gland, Switzerland).

22. Rodrigues, A. S. L., Pilgrim, J. D., Lamoreux, J. F., Hoffman, M. & Brooks,
T. M. (2006) Trends Ecol. Evol. 21, 71–76.

23. World Database on Protected Areas Consortium (2005) World Database on
Protected Areas (United Nations Environment Programme World Conserva-
tion Monitoring Centre, Washington, D.C.), CD-ROM.

24. Balmford, A. (1996) Trends Ecol. Evol. 11, 193–196.
25. Dobson, A. P., Rodriguez, J. P., Roberts, W. M. & Wilcove, D. S. (1997) Science

275, 550–553.
26. Prendergast, J. R., Quinn, R. M., Lawton, J. H., Eversham, B. C. & Gibbons,

D. W. (1993) Nature 365, 335–337.
27. Williams, P., Gibbons, D., Margules, C., Rebelo, A., Humphries, C. & Pressey,

R. (1996) Conserv. Biol. 10, 155–174.
28. Purvis, A., Cardillo, M., Grenyer, R. & Collen, B. (2005) in Phylogeny and

Conservation, eds. Purvis, A., Gittleman, J. L. & Brooks, T. (Cambridge Univ.
Press, Cambridge, U.K.), pp. 295–316.

29. Rodrigues, A. S. L., Andelman, S. J., Bakarr, M. I., Boitani, L., Brooks, T. M.,
Cowling, R. M., Fishpool, L. D. C., da Fonseca, G. A. B., Gaston, K. J.,
Hoffmann, M., et al. (2004) Nature 428, 640–643.

30. Newmark, W. D. (1987) Nature 325, 430–432.
31. Center for International Earth Science Information Network (CIESIN) (2005)

Gridded Population of the World (CIESIN, Palisades, NY), Ver. 3.
32. Cincotta, R. P., Wisnewski, J. & Engelman, R. (2000) Nature 404,

990–992.
33. Balmford, A., Gaston, K. J., Blyth, S., James, A. & Kapos, V. (2003) Proc. Natl.

Acad. Sci USA 100, 1046–1050.
34. United Nations Environment Programme (2002) Strategic Plan for the Con-

vention on Biological Diversity Decision VI�26 (United Nations Environment
Programme, Washington, D.C.)

35. Balmford, A., Crane, P., Dobson, A., Green, R. E. & Mace, G. M. (2005) Philos.
Trans. R. Soc. London B 360, 221–228.

36. Bininda-Emonds, O. R. P., Jones, K. E., Price, S. A., Cardillo, M., Grenyer, R.
& Purvis, A. (2004) in Phylogenetic Supertrees: Combining Information to Reveal
the Tree of Life., ed. Bininda-Emonds, O. R. P. (Kluwer Academic, Dordrecht,
The Netherlands), pp. 267–280.

37. Sechrest, W. (2003) Ph.D. thesis (University of Virginia, Charlottesville, VA).
38. Garland, T., Harvey, P. H. & Ives, A. R. (1992) Syst. Biol. 41, 18–32.
39. R Development Core Team (2005) R: A language and Environment for Statistical

Computing (R Development Core Team, Vienna).

Cardillo et al. PNAS � March 14, 2006 � vol. 103 � no. 11 � 4161

EC
O

LO
G

Y


